Prevent Protect Promote Prevent Protect Promote Prevent int Protect Promote Prevent Protect Promote Prevent Protect

Using Data Linkage Software: When Two Heads Are Better Than One

Lisa Wyman, MPH Bureau of Epidemiology

> Kathy Bell, DVM University of Utah

Types of Linkage

- One-to-one relationship
- One-to-many relationship
- Unduplication

One-to-One Relationship

- Two sets of data are compared
- Goal is to identify all the "best" pairs or matches between the sets
- Example: Mortality linkages
 - Only possible for one death record to match with influenza-associated hospitalization data

One-to-Many Relationship

- Two sets of data are compared
- Goal is to identify all elements of one set that match to a particular element of a second
- Example: Geocoding linkages
 - Possible for any specific address can match to multiple entries in a cancer registry file
 - Multiple records within one family occur

Unduplication

- Single data set used
- Goal is to identify multiple matches within a single set of data
- Example: NETSS unduplication
 - Removes multiple entries for same individual and disease event

Computer Based Linkages

- Vary widely
 - Simple home grown code modules
 - Complex custom written stand alone programs
 - Entire software suites
- Modern algorithms generally fall into two classes:
 - Deterministic
 - Probabilistic

Deterministic Linkages

- Depend upon an entity relationship between the data elements being compared
 - Static, predefined, and empirically based
- Rules used to match the data are the same
 - Regardless of data file size, missing values,
 what values are present in data
- Linkage software example: Link King

Probabilistic Linkages

- Utilize a more fluid relationship entity relationship
- Take into account various attributes of the data important for the increasing probability of match situations
 - Weights assigned to individual fields
- Examples of incorporated attributes:
 - Error rates

epartment

- Frequency analysis of values
- Linkage software example: LinkSolv

Link King: Linking Influenza Hospitalizations and Death Records

Influenza-Associated Hospitalizations

- Reportable condition in Utah
 - Defined as laboratory confirmation of influenza and hospital admission
 - Not to be confused with hospital discharge data (code 487)
- 1032 hospitalizations reported total for 2004-05, 2005-06, and 2006-07 influenza seasons

Pneumonia and Influenza Deaths

- Identified via EDEN
 - Free text field key word search
 - Primary cause of death
- 735 deaths identified for the 2006-07 season

Linking Data Sets

- Purposes of project:
 - Identify those hospitalized cases that died
 - Characterize those cases
 - Demographics
 - Clinical aspects
 - Become familiar with linkage software
 - Link King

Link King: Overview

- Primarily deterministic linkage software
 - Some probabilistic features
- FREE!
- Available on the Internet
 - www.the-link-king.com
- Adapted primarily from Washington State's Division of Alcohol and Substance Abuse
- Good for both unduplication and record linkage
 - SAS based

Link King: What's Needed

- Required:
 - First name
 - Last name
 - Date of birth or SSN
- Recommended:
 - Middle name
 - Maiden name
 - Gender
 - Race/ethnicity
 - Zip code

Link King Steps

- Create SAS datasets
- Unduplicate datasets
- Determine variables to match on
 - Last name
 - First name
 - Date of birth
 - Gender
 - Race

Department

of Health

- Ethnicity
- Review matches

Results

- Seven linkages
 - Only 4 marked as having died in hospitalization database
- Primarily hospitalizations from 2006-07 season (as expected)
 - − 2 hospitalized during 2005-06 season
- 6 persons \geq 65 years, 1 pediatric case

Manual Data Linkage

- Pneumonia and influenza death certificate and hospitalization data sorted by
 - Last name
 - Date of birth

Matches

• The same 7 people were matched in both data sets manually and by Link King

• 3 of the 7 people were not marked as died in the hospitalization data yet had a death certificate

Lessons Learned

- Link King program matching was accurate as verified manually
- Manual linking of very large datasets would be difficult and time consuming
- Deterministic linkages limiting in requiring names and date of birth/ SSN

Future Projects

- Linking deaths from 2007-08 with hospitalizations
 - Same process used
- Linking influenza-associated hospitalizations with hospital discharge data
 - Major undertaking
 - Discharge data missing name in most cases
 - SSN and MRN missing for most IAHs

Discharge Data Linkage

- Deterministic linkage not possible for whole dataset at this point
 - Limited to those cases with known name
 - May be still worthwhile
 - Done manually for the 2004-05 season
 - Gave insight into causes of hospitalizations for IAHs
 - No necessarily influenza

Acknowledgments

- Jeff Duncan
- Wu Xu
- University of Southern California
- David Jackson

